
Probability – Mark Scheme

June 2017 Mathematics Advanced Paper 1: Statistics and Mechanics 1

1.

Question Number	Scheme	Marks
3. (a)	$p = P(B \cap C) = P(B) \times P(C) = 0.6 \times 0.25 = 0.15$	M1
	q = [P(C) - p] = 0.10	A1
		(2)
(b)	r = 1 - 0.08 - [P(B) + q] = 1 - 0.08 - 0.6 - 0.1 (o.e.) or 1 - 0.08 - (0.6 + 0.25 - p)	M1
	= 0.22	Alcao
		(2)
(c)	s = [P(A) - r] = 0.28	B1ft
	$t = [P(B) - p - s \text{ or use } P(B \cap C') - s = 0.6 \times 0.75 - 0.28"] = \underline{0.17}$	B1ft
(1)	D(0 - D(D) - 0.5 - 0.5 - 0.2 - 1; 1; 1; (- 0.20)	(2)
(d)	$P(A) \times P(B) = 0.5 \times 0.6 = 0.3$ which is <u>not</u> equal to $s = 0.28$)	M1
	So A and B are <u>not</u> independent	A1 (2)
	(s + p) or (0.6 t) (0.0 28" + 0.0 15") or (0.6 +0.17")	(2)
(e)	$\frac{(s+p) \text{ or } (0.6-t)}{P(A \cup C) \text{ or } [P(A)+P(C)] \text{ or } (r+s+p+q)}, = \frac{("0.28"+"0.15") \text{ or } (0.6-"0.17")}{0.5+0.25}$	M1, A1ft
	$P(A \cup C) \text{ or } [P(A) + P(C)] \text{ or } (r+s+p+q)$ 0.5+0.25	,
	43	
	$=\frac{43}{75}$	A1 (3)
	-	1111
		[11]

